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Quantum Teleportation and Quantum Dense
Coding in a Finite-Dimensional Hilbert Space
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Irreducible unitary representations of finite group and compact group describe quantum-
state transformation (quantum coding) and quantum measurement (quantum decoding).
The quantum teleportation and the quantum dense coding in a finite-dimensional Hilbert
space are formulated in terms of an irreducible unitary representation of group. The
description based on the group representation makes clear the similarity and difference
between the quantum teleportation and the quantum dense coding.
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1. INTRODUCTION

Quantum information has recently attracted considerable attention in quan-
tum physics and information science and technology, which not only gives deeper
insight in the principles of quantum mechanics, but also provides remarkable infor-
mation processing methods such as quantum computing, guantum communication,
and quantum cryptography (Hirotd al., 1997; Kumaret al, 2000; Tombesi and
Hirota, 2001). In quantum information processing, a unitary operation is one of
the most important quantum operations which transform one quantum state into
another. Quantum operations include encoding some information into a quantum
state and measurement performed on a quantum state. Quantum decoding that
extracts information from a quantum state is nothing but a quantum measurement
process which is described by positive operator-valued measure (Helstrom, 1976;
Holevo, 1982). Irreducible unitary representations of finite group and compact
group play a very important role in quantum coding and decoding. Unitary opera-
tors belonging to the irreducible representation not only describe a transformation
of a quantum state, but also generate positive operator-valued measure of quan-
tum measurement. Therefore general theories of the quantum teleportation and the
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guantum dense coding in a finite-dimensional Hilbert space can be formulated in
terms of an irreducible representation of group.

In Section 2, quantum coding and quantum decoding based on an irreducible
unitary representation (or projective representation) of group are explained. There,
the standard protocol in a quantum communication system is introduced. In Sec-
tions 3 and 4, the quantum teleportation and the quantum dense coding with the
standard protocol are formulated. In Section 5, simple examples of the general
results are considered. In Section 6, the concluding remarks are given.

2. QUANTUM CODING AND QUANTUM DECODING

Quantum coding and quantum encoding are described by an irreducible uni-
tary representation of group. Suppose an irreducible unitary representation (or
an irreducible projective representatigh)= {U(g) | g € G} of a finite groupG,
where a unitary operatdﬁ belonging to the representation is defined on\an
dimensional Hilbert spack. Although a finite group is considered in this paper,
the most of the results are valid for a compact group. Then, for any opetator
defined on the Hilbert spack, Schur’s lemma yields the equality (Robinson,
1980)

N

o Y (%0 (g) = (Tr 0, (1)

geG

where|G| is the cardinality of5 and1 is the identity operator defined on the Hilbert
spaceH. Quantum measurement, the outcome of which belongs to the @oup
is described by a positive operator-valued measure (P@M}= {X(g) | g € G}
which satisfies (Helstrom, 1976; Holevo, 1982)

Y X@=1 X@=o (2)
geG

When we perform the quantum measurem&gton a system prepared in a quan-
tum statep; the measurement outcorges G is obtained with probability

P(g) = TI[X(9)A), (3)

which is normalized a&qcc P(g) = 1. For an arbitrary density operato(c > 0,
Tr 6 = 1) defined on the Hilbert spaé¢, we define an operatot, (g) as

n N ~ o~

Xq(9) = @U(Q)GU (9). 4)
Then, from Schur’s lemma (1), the ¢, () | g € G} becomes a POM and de-
scribes some quantum measurement. The map g from a quantum state to
a group element determined by the PQM,,(g) | g € G} is quantum decoding.
Using the quantum decoding, we can extract some information from the quantum
statep”
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Quantum coding is a process that encodes some information on some quantum
statep. For example, when we have the irreducible unitary representgtiare
can encode information represented by the elegentG on the quantum staje ~
by the following unitary transformation:

5 — p(g)=U(g)pU" (g). )

In a quantum communication system, a sender can encode some information by
Eg. (5) on a signal quantum state and a receiver can extract the information from the
encoded quantum state by Eq. (4). The conditional probability, called the channel

matrix, of such a quantum communication channel is given by

P(g'|9) = Tr[X,(9)5(g)]

N N -
= 50910 (@ *9)0) ()
When the seG is an additive group, the conditional probabiliB(g'| g) is a
function of the differencg’ — g, thatis,P(g’' | g) = P(g'| 9), whereP(g) is given
by
N U S
P(g) = @Tr[U(g)oU (9)0], )
which is equivalent to the operational phase-space probability distribution (Ban,
1997; Buecket al, 1996). As stated above, the irreducible unitary representa-
tion of group determines both quantum coding and quantum decoding. When the
guantum coding by the sender and the quantum decoding by the receiver are de-
termined by the irreducible unitary representation of the same group, it is said that
the quantum communication is subject to the standard protocol. For example, itis
the standard protocol that the sender encodes information by applying the Pauli
matrices and the receiver performs the Bell measurement.
We consider a simple example of the standard protocol of quantum communi-
cation. For this purpose, we denote a complete orthonormal system of the Hilbert
spaceH as{|vo), V1), ..., [¥n_1)}. We introduceN? unitary operatorsj(j, k)

by
- = (27,
u(. k) = ZGXP(WNH) [¥1 modN) (¥t moan|
=0

= exp(e;n) exp(—iké), (8)

with j,k=0,1,...,N — 1 and6; = 27j/N. In this equationg is the Pegg—
Barnett phase operator aifidis the number operator canonically conjugate to

6 (Barnett and Pegg, 1990; Pegg and Barnett, 1989). The set of the operators,
{U(j,K1j,k=0,1,..., N — 1}, is the irreducible projective representation of
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the generalized Pauli group. It is easy to see that the unitary opéﬁi(IiOk)
satisfies (Ban, 2002a)

1 N=IN= 1 ont
= K)XU'(j, k) = (TrX)1 )
N j=0 k=0
for any operatoiX defined on the Hilbert spade and the orthogonality relation
Nmof(,—, K0 (1, m)] = 8 S (10)
Furthermore, we have the relations for the unitary operaidgis k):
G(j, kaa, mu'a, k = 0q, m)exp[—%(jm - kl)} : (11)
A A . 2mi
U(J,k)U(I,m)=U(J+I,k+m)exp(wkl>, (12)
6'(1,10 = 6=, 9 exp( 3 ik ). a9

When N = 2, the four unitary operatorél(J k) are equivalent to the identity
operatorl and the three Pauli operatarg, 5y, 6,. Thus the unitary operator
U(j, k) is sometimes referred to as the generalized Pauli operator.

We can encode 2 Iggbits of information on a quantum stage by ap-
plying one of theN? unitary operatordﬁ(j, k) with equal probabilities ap =
U(j, k)pU"(j, k). A completely entangled bipartite staf@”8) of (N x N)-
dimensional Hilbert spac” ® HEB is expressed as

97%) = Z |wt) ® [we). (14)

The local unitary transformatlo|r‘i!jk ) of the bipartite stat¢¥”B) remains com-
pletely entangled, where the bipartite quantum qrag‘& is given by

[Wie) = VA, k) ® 15T w78). (15
WhenN = 2, these quantum states become equivalent to the Bell $taf€s
and|WA4B). It is found from Egs. (9)—(13) that the operami)lﬁi3 = WA (WA

satisfies the relations

N-1N-1 AB AB

AB
ik
j=0 k=0
Thus the set of the projection operatqu?iﬁi3 |j,k=0,1,..., N — 1}, describes
the quantum measurement which is called the generalized Bell measurement.
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3. QUANTUM TELEPORTATION

The quantum teleportation can transmit an unknown quantum state, without
sending itself, by means of quantum entanglement and classical communication
(Bennettet al, 1993). The quantum teleportation was originally proposed for a
guantum state defined on a finite-dimensional Hilbert space and generalized later
(Ban, 2002b; Bowen and Bose, 2001; Braunsttiral, 2000; Braunstein and
Kimble, 1998). Furthermore it has been shown that an irreducible representation
of group plays an important role in the ideal quantum teleportation (Braunstein
et al, 2000).

Suppose that Alice (a sender) and Bob (a receiver) share a bipartite quantum
statep™® defined on thel| x N)-dimensional Hilbert spac®#” ® HE. Further-
more Alice is provided an unknown quantum sta®td be teleported, defined on
an N-dimensional Hilbert spac&®. The total quantum state of Alice and Bob
is given bys2*® = 52 @ 5*B. It is assumed here that the quantum teleportation
is subject to the standard protocol explained in the previous section. Then Alice

performs a quantum measurement described by an op&g/t'\tﬁg) defined on the
Hilbert spaceH® @ HA,

X (g) = [wA(@) (¥ A(g)!, (17)
with
WA (g)) = %(OQ(g) ® 14)woA, (18)

where |4 is a completely entangled bipartite quantum state of the Hilbert
spaceH® ® H” and the unitary operatdBQ(g) belongs to the irreducible uni-
tary representatiof of the groupG. It is seen from Schur’'s lemma (1) that the
equality Xgec XQA(g) =19 ® 1* holds. It is important to note that the operator
XQA(g) is not an orthogonal projector in general. After performing the quantum

measurement, Alice informs Bob of the measurement outaplyeclassical com-
munication. When Bob knows the measurement outcophe applies the unitary

operatorUB(g) to his quantum state. Then, according to the state-reduction for-
mula (Kraus, 1983), the quantum stai&,t(g) that Bob finally obtains is given

by

U°(9){Troa[(X*(0) ® 18)52*®]}0 % (g)
Troas[(X¥(9) ® 18)5Q"%] '

which is obtained with probability

Poul9) = (19)

P(9) = Trons [ (X (@) @ 195" (20)
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Therefore Bob obtains, in average, the quantum gtje °

Py U%(@) {Troa [(X¥(@) © 1959 ]} 0¥ (0). (21)
geG

In the ideal quantum teleportation, the quantum staﬁg§g) and pﬁ’ut are equal
to the unknown quantum state that Alice was given.

In the standard protocol, substituting Egs. (17) and (18) into Egs. (19)—(21),
we obtain

(W2 ® 3*° (9)]1 W)

Paul®) = T VA O (W @2
N2 n ~

P(g) = |G—|Tra<wQA|[pQ ® P (@)w), (23)

Pou = NHWA|(5% ® 56°) W), (24)

where the quantum staje'®(g) is the twirling transformation of the bipartite
quantum statg”® (Horodeckiet al,, 1999),

-~ ~A % ~B ~ ~Ax ~B
A*8(9) =[U""(g9) ® U (9)1p**[U" " (g) @ U~ (9)], (25)
and the quantum stag&® is the average of all the possible transformation,
R 1 N
pee = = ") (26)
|Gl 4<G

In deriving these equations, we have used the fact that the following relation holds
for the completely entangled stgt&Q?):

(V2 @ 194w — (1Q @ V") WA, 27)

where the symbol T stands for the transposition of the operator.
In particular, if the unknown quantum stgt€ is pure, that isp® = |¢Q)
(W[, Egs. (22)—(24) are simplified as

(WA 518 (g) | WA )

Poul9) = TI’B(\IJA*|,6AB(Q)|\IJA*>’ (28)
N

P(g) = @TYB(‘IJA*lﬁAB(g)l‘VA*% (29)

Pout = N<\DA*|[’éB|\I'A*>' (30)

Here, when the state vectpp) is expanded agb) = S 'a | Wy), the state
vector|W*) is defined by w*) = T} tai| W), the sef| W)k = 0, 1,..., N — 1}
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being a complete orthonormal system ofdwdimensional Hilbert space. Further-
more we used the fact that
N-—1

> (] wQ)wg) = (wh). (31)

k=0
In this case, the fidelityF(g) and the average value of the fidelifyare given by
(WA*, \I/B|ﬁAB(g)|\IJA*, \IJB>
Tre (WA*|5°% (g)| WA ~)
F = (wh*, wB| 508 |pA*, wB), (33)
where|WA*, WB) = |WA*) @ |WB),

Suppose that the bipartite quantum sieft8 $hared by Alice and Bob is the
generalized Werner state given by

F(9) = , (32)

1
AW = FIWPH™| 4 S (1A ® 1% — )], (34)

where the singlet fractioRr satisfies O< F < 1. In this case, Eqs. (22)—(24) are
calculated to be

N2F — 1 4 N2(1 - F)
NZ—1 Pt TRES
andP(g) = 1/|G|, where the density operato? fepresents the unknown quantum

state to be teleported, defined in the Hilbert sgi€eln this case, Alice and Bob
cannot obtain any information about the unknown quantum gfatd e result

means that even if the operatﬁ_PA(g) is not an orthogonal projector, the perfect
quantum teleportationi{(g) = F = 1) is possible when Alice and Bob share the
completely entangled stat€ (= 1) (Braunsteiret al, 2000). This result is quite
different from that obtained for the quantum dense coding (see the next section).
Let the eigenvalues of the unknown quantum statedye.q, ... An_1. Then the
fidelity is calculated to be

2
F=F(@g) = (Tr VA" Pout ﬁB>

N2F 2. NA—F)
A
(Z k+ NZ_1 k
NF+1

< 71
-~ N+1
where the equality holds fdf = 1 or (6®)% = p°.

pout pout(g) (1B/N) (35)

2

(36)
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We next assume that the unitary operal.tkilg) is given by Eq. (8). In this
case, we havg = (j, k) and |G| = NZ2. Since the unitary operatd’(g) satis-
fies Egs. (9)—(13), the operatk(r (g) becomes an orthogonal projector and de-
scribes the generalized Bell measurement. Furthermore, thgds¥t(j, k)) =
|\I/ﬁ(B) lj,k=0,1,...N — 1} is an complete orthonormal system of the Hilbert
spaceH” @ HB. Using these properties, after some calculation, we obtain the
relation

(WA [p°

b)
®
»

>

[vs)
=
=~
et
S

Q
=

1 - A A
= > G4, -11580°% (n, —n)(wP 1578 WAl
s @1 @r/N)(Il'=nm)+i (27 /N)K(I —n)+i (Zn/N)j(I/—n’), (37)
where we have used the fact that
N—-1N-1
33 [P wRpudwe| = 4°. (38)
j=0 k=0

Substituting Eq. (37) into Egs. (22)—(24), we can obtain all the quantities that com-
pletely characterize the quantum teleportation. In particular, the averaged quantum
statep® , is given by

B N—1N-1 ) ~B.. BB
Pout = P(j, KU (j, —k)p~U (], —K), (39)
j=0 k=0
with
P(i, k) = (Wi 158 W) (40)

This result means that the quantum teleportation is equivalent, in average, to the
generalized depolarizing channel (Bowen and Bose, 2001).

4. QUANTUM DENSE CODING

The quantum dense coding transmits classical information by means of quan-
tum entanglement and quantum communication (Ban, 2002a; Bennet and
Wiesner, 1992; Bowen, 2001). The amount of classical information transmitted
via the quantum dense coding is greater than that transmitted without using quan-
tum entanglement. In ideal cases, the information capacity of the quantum dense
coding channel is twice as great as the capacity of the quantum channel without
guantum entanglement. For example, although the upper bound on the capacity of
a qubit channel is one bit, the quantum dense coding of a qubit can transmit two
bits of information.
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Suppose that Alice and Bob share a bipartite quantumstétdefined on the
(N x N)-dimensional Hilbert spade” ® HEB. Inthe quantum dense coding which
obeys the standard protocol, Alice encodes classical information on her quantum
state by applying the unitary operatﬁrA(g) which belongs to the irreducible
unitary representatiogy of the groupG, and she sends the encoded quantum
state to Bob through a noiseless quantum channel. Then Bob obtains the encoded
bipartite quantum state

7"8(9) = (0*(0) ® 1%)5"8 (0™ (9) ® 19). (41)

To extract the information that Alice encoded, Bob performs the quantum mea-
surement described by the operafo/?B(g) defined by Egs. (17) and (18). The
conditional probability (the channel matrix of the quantum dense coding channel)
P(g’| g) that Bob obtains the measurement outcaghehen Alice encoded the
informationg is given by

P(g' | 9) = Tras[X"°(9)5*3(g)]. (42)

Substituting Egs. (17), (18), and (41) into this equation, the conditional probability
P(g’| g) can be expressed as

2
P | g) = %(‘I’ABIﬁAB(Q, §)we), 43)
with
7"2(9, 9) = [U"(@) ® U°"(9)]5*81U" (9) ® U (@] (44)

When Alice encodes the informatignon her quantum state with probabil-
ity (g), the mutual informatior (B : A) of the quantum dense coding channel
becomes

/ P(g'l9)
I1(B:A) = P | . 45
(B:A) QZGQZG (g'19)7(g) °g[zg~ee P(g,|g,,)n(g,/)} (45)

It is easy to see from Schur’s lemma (1) that if the prior probabilities are equal
(m(g) = 1/|G]), the output probabilitie®,,(g’) are also equal:

N N
Pout(g)—gezG PU19G = G (46)

In this case, the mutual informatidi{B : A) becomes

I(B:A)=log|G|+ ) > P(g'|g)logP(g | g). (47)

geG geG
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To obtain the maximum value of the mutual information, the equ#dity | g) =

84 Must be fulfilled. To investigate this condition, we assume here that Alice and
Bob share the completely entangled bipartite quantum pfete="|WAB) (WAB |,
Then, the conditional probabiliti?(g’ | g) is given by

P(g'|9) = [(W"8(g) "B (g))I%, (48)

where| B (q)) is given by Eq. (18). Thus to establish the equaftty’ | g) = 8qq,
the state vectow”B(g)) ) must be orthogonal. To satisfy the condition, itis enough
that the unitary operatctd (9) is chosen to beJ(J k), which is given by Eq. (8).
In this case, we obtaih(B : A) = 2 logN, which is twice as great as the informa-
tion transmitted without the quantum entanglement. Here, it is important to note
that although it is sufficient for performing the perfect quantum teleportation that
Alice and Bob share completely entangled bipartite state, the error-free quantum
dense coding which yields(B : A) = 2 logN further requires that the bipartite
quantum stat¢¥”B(g)) be orthogonal.

The quantum information theory tells us that the classical information capac-
ity C of the quantum dense coding channel is given by (Holevo, 1998; Schumacher
and Westmoreland, 1997)

C= T(‘S)X[S (Z ﬂ(g)ﬁAB(g)> - > ()™ (g))} ) (49)

geG geG

whereS(p) is the von Neumann entropy of the quantum siate ~

S(p) = —Tr[p logp]. (50)

It has been shown (Ban, 2002a; Bowen, 2001) that the maximum value of the
capacity is attained when Alice applies the unitary operbt6y, k) with equal
probabilities ¢ (j, k) = 1/N?) and Bob performs the generalized Bell measure-

ment)A(?f. Inthis case, the capacity of the quantum dense coding channel becomes

=logN + S(5°) — (5"°), (51)

where p® = Tra p”B. When o8 is the completely entangled state, we obtain

C = 2 logN sincep® = iB/N. This result means that the maximum value of the
capacity is attained by means of the completely entangled bipartite state while
the maximum value of the mutual information further needs the orthogonality of
the completely entangled state.
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5. SIMPLE EXAMPLE

In this section, we consider the quantum teleportation and the quantum dense
coding of a qubit, where Alice and Bob share one of the four Bell states,

|00) + |11) |01) + |10)
|\I/iB) —_ = |‘IJ:AEB) = T

Nz

When the set of the Pauli matriceis Gx, Oy, G2} is used as the irreducible pro-
jective representation of the group, an arbitrary qubit state can be sent perfectly
by means of the quantum teleportation and two bits of classical information can
be sent via the quantum dense coding (Bennet and Wiesner, 1992; Betralett
1993).

Suppose that Alice and Bob use the irreducible unitary representation of the
point groupDs3, which is the symmetric group of a regular triangle, instead of
the Pauli group, where the representation consists of the following2initary

(52)

matrices:
AR CR N v B
oo D) ) e
e (TH Y (229

Even in this case, since Alice and Bob share the completely entangled state, an
arbitrary qubit state can be transmitted with unity of the fidelity by the quantum
teleportation, where 2 1g@ bits of classical information should be sent from Alice

to Bob. To investigate the quantum dense coding, we assume that Alice and Bob

share the Bell statg4®). Then the state vectof@®) = (UJ-A ® 1B)|0A8)(j =
1,2,...,6)become

(Wf) = 125%),  [u3®) = %I@D’iB) + ?Nf’_w), (56)
[w38) = %|¢¢B> - \/;IKI/AB), (57)
(W) = 19%8),  |wE®) = %ch’iB) + ?mfﬁB), (58)
we) = 21028 EIWﬁB>. (59)

2 2
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The conditional probabilityP(j | k) of the quantum dense coding channel is
given by

2/3 16 1/6 0 0 O
1/6 2/3 16 0 0 O
1/6 1/6 23 0 0 O
0 0 0 23 1/6 1/6
0O 0 0 16 23 1/6
0 0 0 16 1/6 23

P(j Ik) = (60)

When Alice applies the unitary operaﬂarj with equal probabilities®; = 1/6),

the information transmitted from Alice to Bob is calculated tol B : A) = 4/3
(bits). Note that when Alice use the Pauli matrices to encode the information and
Bob performs the Bell measuremeh(B : A) = 2 (bits) is obtained.

6. CONCLUDING REMARKS

We have formulated the quantum teleportation and the quantum dense coding
in a finite-dimensional Hilbert space in terms of the irreducible unitary representa-
tion of group. Such a formulation makes clear the similarity and difference between
the quantum teleportation and the quantum dense coding. Although we have con-
fined ourselves to a finite group and its representation in this paper, the results can
be generalized for an infinite group that satisfies the compactness. In this case,
the summationN/|G)Xqcc F(9) is replaced with the integral _; du(g) F(9),
wheredu (g) is the invariant Haar measure (Robinson, 1980).
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